112.Path Sum

Question

Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.

Note: A leaf is a node with no children.

Example:

Given the below binary tree and sum = 22,

1
2
3
4
5
6
7
5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1

return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.

Answer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if(root == null)
return false;
if(root.left == null && root.right == null)
return root.val == sum; //leaf
if(root.left != null && hasPathSum(root.left, sum - root.val))
return true;
else if(root.right != null && hasPathSum(root.right, sum - root.val))
return true;
return false;
}
}

Better Answer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if(root == null)
return false;
if(root.left == null && root.right == null)
return root.val == sum; //leaf
return hasPathSum(root.left, sum - root.val) || hasPathSum(root.right, sum - root.val);
}
}

Time complexity: $O(n)$

Space complexity: $O(n)$