LeetCode Tree Traversal Summary

Here I summarize the iterative implementation for preorder, inorder, and postorder traverse.

PreOrder model

1
2
3
4
5
6
7
8
public static void helper(List<Integer> res, TreeNode root){
if(root == null)
return ;
// 操作
// 终止条件
helper(res, root.left);
helper(res, root.right);
}

Inorder model

1
2
3
4
5
6
7
public static void helper(List<Integer> res, TreeNode root){
if(root == null)
return null;
helper(res, root.left);
// 操作
helper(res, root.right);
}

144.Pre Order Traverse

Recursive

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
return recursivePreTraversal(root, res);
}
public List<Integer> recursivePreTraversal(TreeNode root, List<Integer> res){
if(root!=null){
res.add(root.val);
recursivePreTraversal(root.left, res);
recursivePreTraversal(root.right, res);
}
return res;
}
}

Running time: O(n), 1ms

Iterative

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
Stack<TreeNode> stack = new Stack<>();
List<Integer> res = new ArrayList<>();
TreeNode node = root;
while(node!=null || !stack.isEmpty()){
// left
while(node!=null){
System.out.println(node.val);
res.add(node.val);
stack.push(node);
node = node.left;
}
// right subtree
if(!stack.isEmpty()){
node = stack.pop();
node = node.right;
}
}
return res;
}
}

Running time: O(n), 10ms

Stack Right node first, then left node

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
if(root==null)
return res;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode node = stack.pop();
res.add(node.val);
if(node.right!=null)
stack.push(node.right); //first right node,
if(node.left!=null)
stack.push(node.left);
}
return res;
}
}

Running time: O(n), 2ms

94.In Order Traverse

Recursive
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
return recursiveInTraversal(root, res);
}
public List<Integer> recursiveInTraversal(TreeNode root, List<Integer> res){
if(root!=null){
recursiveInTraversal(root.left, res);
res.add(root.val);
recursiveInTraversal(root.right, res);
}
return res;
}
}

Running time: O(n), 1ms

Iterative
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
if(root == null)
return res;
Stack<TreeNode> stack = new Stack<>();
TreeNode node = root;
while(node!=null||!stack.isEmpty()){
while(node!=null){
stack.push(node);
node = node.left;
}
if(!stack.isEmpty()){
node = stack.pop();
res.add(node.val);
node = node.right;
}
}
return res;
}
}

Running time: O(n), 2ms

145.Post Order Traverse

Using addFirst(Element e)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public List<Integer> postorderTraversal(TreeNode root) {
LinkedList<Integer> result = new LinkedList<>();
Deque<TreeNode> stack = new ArrayDeque<>();
TreeNode p = root;
while(!stack.isEmpty() || p != null) {
if(p != null) {
stack.push(p);
result.addFirst(p.val); // Reverse the process of preorder
p = p.right; // Reverse the process of preorder
} else {
TreeNode node = stack.pop();
p = node.left; // Reverse the process of preorder
}
}
return result;
}

Using LastVisit node

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
LinkedList<Integer> res = new LinkedList<>();
if(root == null)
return res;
Stack<TreeNode> stack = new Stack<>();
TreeNode node = root;
TreeNode lastVisit = root;
while(node != null || !stack.isEmpty()){
while(node!=null){
stack.push(node);
node = node.left;
}
node = stack.peek();
if(node.right==null || node.right==lastVisit){
res.add(node.val);
stack.pop();
lastVisit = node;
node = null;
}
else
node = node.right;
}
return res;
}
}

后序遍历在决定是否可以输出当前节点的值的时候,需要考虑其左右子树是否都已经遍历完成。

所以需要设置一个lastVisit游标。

若lastVisit等于当前考查节点的右子树,表示该节点的左右子树都已经遍历完成,则可以输出当前节点。

并把lastVisit节点设置成当前节点,将当前游标节点node设置为空,下一轮就可以访问栈顶元素。

102.Level Order Traversal

Iterative

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if(root == null)
return res;
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()){
List<Integer> temp = new ArrayList<>();
int size = queue.size();
for(int i=0;i<size;i++){
TreeNode node = queue.poll();
temp.add(node.val);
if(node.left!=null)
queue.offer(node.left);
if(node.right!=null)
queue.offer(node.right);
}
res.add(temp);
}
return res;
}
}

Time complexity: O(n), 2ms

Recursive

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if(root == null)
return res;
recursiveLevel(res, root, 1);
return res;
}
public void recursiveLevel(List<List<Integer>> res, TreeNode node, int depth){
if(node == null)
return;
if(res.size() == depth-1){
List<Integer> temp1 = new ArrayList<>();
temp1.add(node.val);
res.add(temp1);
}
else if(res.size() >= depth){
List<Integer> temp2 = res.get(depth-1);
temp2.add(node.val);
}
recursiveLevel(res, node.left, depth+1);
recursiveLevel(res, node.right, depth+1);
}
}

Time complexity: O(n), 1ms