206.Reversed Linked List

LinkedList, Easy

Question

Reverse a singly linked list.

Example:

1
2
Input: 1->2->3->4->5->NULL
Output: 5->4->3->2->1->NULL

Follow up:

A linked list can be reversed either iteratively or recursively. Could you implement both?

My Answer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode reverseList(ListNode head) {
ListNode cur = head;
ListNode prev = null;
while(cur!=null){
ListNode temp = cur.next;
cur.next = prev;
prev = cur;
cur = temp;
}
return prev;
}
}

Running time: O(n)

Space: O(1)

Recursive Answer

The recursive version is slightly trickier and the key is to work backwards. Assume that the rest of the list had already been reversed, now how do I reverse the front part? Let’s assume the list is: n1 → … → nk-1 → nk → nk+1→ … → nm → Ø

Assume from node nk+1 to nm had been reversed and you are at node nk.

n1 → … → nk-1 → nk → nk+1 ← … ← nm

We want nk+1’s next node to point to nk.

So,

nk.next.next = nk;

Be very careful that n1’s next must point to Ø. If you forget about this, your linked list has a cycle in it. This bug could be caught if you test your code with a linked list of size 2.

1
2
3
4
5
6
7
public ListNode reverseList(ListNode head) {
if (head == null || head.next == null) return head;
ListNode p = reverseList(head.next);
head.next.next = head;
head.next = null;
return p;
}

Complexity analysis

  • Time complexity : O(n). Assume that nn is the list’s length, the time complexity is O(n).
  • Space complexity : O(n). The extra space comes from implicit stack space due to recursion. The recursion could go up to n levels deep.